Basic Life Support: Understanding BLS practice from an evidence-based perspective

Associate Professor Julie Considine RN PhD
CENA representative, ARC
BLS Convenor, ARC
Disclosures

Julie Considine

- Deputy Editor of the Australasian Emergency Nursing Journal so receives an annual honorarium from College of Emergency Nursing Australasia
Prevention

Timely recognition of, & response to, deteriorating patients

(Smith, 2010)
Basic Life Support

DRS ACBD

- check for Danger
- check for Response
- Send for help
- open the Airway
- check Breathing
 - no need to deliver two rescue breaths
- perform 30 Compressions
 - if unresponsive & not breathing normally, followed by 2 breaths
- attach an AED as soon asap
Danger

Current recommendations

- move collapsed or injured victims
 - to ensure safety: rescuer & victim
 - extreme weather or difficult terrain
 - take care of airway, breathing, and circulation
 - control severe bleeding

- positioning
 - unconscious persons breathing normally = on their side
 - roll face-down unresponsive victims into supine position
 - assess airway / breathing
 - initiate resuscitation
 - concern for protecting the neck should not hinder the evaluation process or life saving procedures
Response

Current recommendations

- assess victim's response to verbal & tactile stimuli
 - ‘talk and touch’
- if unconscious & breathing, turned onto the side to
 - establish & maintain a clear airway
 - facilitate drainage & reduce the risk of inhaling foreign material

- ‘signs of life’ have been removed from all ARC guidelines
- unresponsive and not breathing normally are now the indicators for resuscitation

(ARC guideline 3)
Send for Help

Current recommendations

- send for help formally included in BLS flowchart
- need to make a judgement about fall first vs call fast
- trained rescuers should stay with the victim & send others to seek assistance

(ARC guideline 2)

Different systems in different contexts

- call an ambulance (dial 000)
- call for additional resources & skills (eg. MICA)
- Code Blue / Cardiac Arrest Team
- Medical Emergency Team
Airway

Current recommendations

- indications for airway management
 - unconscious
 - obstructed airway
 - needs rescue breathing
- in unconscious victims, care of the airway takes precedence over any injury
 - including the possibility of spinal injury
- no need to routinely roll victim on their side
 - can assess airway with victim supine (or in position in which they have been found) = ↓ time & avoids movement
- except if submersion injury or if airway is obstructed
Airway

Current recommendations

- adults & children
 - head tilt / chin lift
- infants
 - neutral head position
 - do not use maximum head tilt = may cause airway compression
- finger sweep
 - no need for routine use
 - may be considered in unconscious patients only if solid material visible in oro-pharynx
Airway: choking

Current recommendations

- **Assess Severity**
 - **Severe airway obstruction**
 - Ineffective Cough
 - Unconscious
 - Call ambulance (000)
 - Commence CPR
 - Conscious
 - Call ambulance (000)
 - Give up to 5 back blows
 - *If not effective*
 - Give up to 5 chest thrusts
 - **Effective Cough**
 - Mild airway obstruction
 - Encourage coughing
 - Continue to check victim until recovery or deterioration
 - Call ambulance (000)
Breathing

Current recommendations

- assess breathing
 - **LOOK** for movement of the upper abdomen or lower chest
 - **LISTEN** for the escape of air from nose & mouth
 - **FEEL** for movement of the chest & upper abdomen
- if unresponsive & not breathing normally
 - clear airway
 - commence chest compressions
 - followed by 2 rescue breaths
Breathing

Current recommendations
▪ rescue breathing
 ▪ maintain patent airway
▪ options
 ▪ mouth to mouth / nose / mask / neck stoma
 ▪ bag-valve-mask
▪ look for rise of the victim’s chest during each inflation
▪ if the chest does not rise, consider
 ▪ airway obstruction (inadequate head tilt, chin lift, tongue or foreign material)
 ▪ insufficient air being blown into the lungs
 ▪ inadequate air seal
Breathing

Current recommendations

- ‘if unwilling / unable to perform rescue breathing, then perform compression only CPR’ has been included in all BLS guidelines

- permissive statement
 - aims to increase bystander CPR rates

- standard CPR remains the gold standard & should be the standard for healthcare professionals
 - rescue breathing & chest compressions
Breathing

Evidence review

- during 1st 5 minutes of cardiac arrest
 - adults maintain an oxygen saturation > 80–85%
 - ventilation is not important
 - more important to provide uninterrupted chest compressions

- after 5 minutes following arrest ventilations become more important
 - amount of passive ventilation from chest compressions decreases as the diaphragm runs out of energy (ATP)
Breathing

Evidence review

- cardiac arrest is not a normal physiological state
 - no need to 'normalise' breathing during CPR
- during cardiac arrest
 - ↓ blood flow
 - ↓ metabolism
 - ↓ CO2 production
 - even if metabolism continues in some tissues, low flow state will ↓ CO2 transport to the lungs
Breathing

Evidence review

- over-ventilation common during CPR
 - hyperventilation / excessive tidal volumes particularly if using bag-valve-mask

- effects of over-ventilation
 - ↑ intrathoracic pressure
 - ↓ venous return (blood coming back to heart)
 - ↓ cardiac output (blood leaving the heart)
 - ↓ cerebral & coronary perfusion
 - ↓ survival
Breathing

Current recommendations

- if available, consider using a barrier device
- risk of disease transmission is very low
- initiating rescue breathing without a barrier device is reasonable

Evidence review

- no human studies have addressed the safety, effectiveness, or feasibility of using barrier devices to prevent victim contact during rescuer breathing
 - three studies showed that barrier devices can decrease transmission of bacteria in controlled laboratory settings
Compressions

Current recommendations

- should be commenced in all persons who are unresponsive & not breathing normally
- pulse check is unreliable
 - should not be used to confirm need for resuscitation
- site
 - compress on lower half of sternum
 - no need for measurement, caliper methods etc.
Compressions

Current recommendations

- **technique**
 - place victim on hard surface
 - infants = two fingers to minimise transfer time from compression to ventilation
 - children = either 1 or 2 hand technique
 - adults = 2 hand technique
 - allow complete recoil of the chest after each compression

- **depth**
 - compress ~ 1/3 depth of the chest
 - adults & children ~ 5 cm
 - infants ~ 4 cm
Compressions

Current recommendations

▪ rate
 ▪ compress at a rate of 100 per minute in all ages
 ▪ you will not deliver 100 compressions per minute as need to pause for rescue breathing
 ▪ no evidence that a compression rate over 120 / minute offers any advantage

▪ quality control
 ▪ change rescuers every 2 minutes where possible
 ▪ rescuer fatigue = ↓ compression quality, particularly depth
 ▪ consider use of CPR feedback devices

▪ risks
 ▪ rib fractures & other injuries are common but acceptable consequences of CPR
Compressions

Evidence review

- chest compressions can generate
 - 25% to 30% of normal cardiac output
 - systolic BP 60 to 80 mm Hg

- organ perfusion during CPR
 - cerebral blood flow is 30% - 40% of normal
 - coronary blood flow is 10% to 20% of normal

(Kern, 2000 Clin Anaesthiol)

- rationale for increased focus on chest compressions
 - the heart needs a continuous supply of ATP
 - more compressions → ↑ myocardial blood flow → ↑ ATP
 - ventricular fibrillation becomes more coarse → ↑ chance of successful defibrillation
Evidence review

- coronary perfusion pressure has direct correlation with ROSC
 - 100 patients in cardiac arrest
 - no ROSC if CPP < 0 mm Hg
 - all pts with ROSC had CPP > 15 mm Hg
 (Paradis et al. 1990)

- coronary perfusion pressure
 - ↑ during chest compressions
 - ↓↓ when compressions are stopped
 - is cumulative, needs multiple compressions
Evidence review

Compressions

CPP = chest compressions

Time

(Berg et al. 2001)

thanks to Dr Michael Parr, ICU Liverpool Hospital for graphics
Evidence review

Compressions

CPP

Time

= chest compressions

(Berg et al. 2001)

thanks to Dr Michael Parr, ICU Liverpool Hospital for graphics
Compressions

Evidence review

- quality of CPR is variable, even in ‘expert’ hands
- 67 patients in 1st 5 minutes of in-hospital cardiac arrest

(Abella et al. 2005 JAMA)
Defibrillation

Current recommendations

- role of AEDs as part of BLS in both out of hospital and in hospital environments recognised
 - AED’s are effective in decreasing the time to first defibrillation during in-hospital cardiac arrest
- training in AED use should be part of BLS education
 - improves performance (use speed, correct pad placement)
- AED use should not be restricted to trained personnel
 - allowing the use of AEDs by individuals without prior formal training can be beneficial and may be life saving
- AEDs can accurately identify the cardiac rhythm as “shockable” or “non shockable”
Defibrillation

Current recommendations

- pad placement
 - anterior-lateral position (alt, anterior-posterior or apex-posterior)
 - reasonable to place the L) pad lateral to or underneath left breast, avoiding breast tissue
 - avoid placement implantable devices, medication patches

- in children
 - standard adult AEDs & pads are suitable for children > 8 years
 - ideally, for children 1 to 8 years paediatric equipped AED & pads should be used
 - if the AED does not have paediatric mode or paediatric pads then a standard adult AED and pads can be used
Defibrillation

Current recommendations

- pad to skin contact
 - important for successful defibrillation
 - ensure pads are not touching
 - important if using adult pads in children
 - may need to remove moisture or excessive chest hair prior to pad application
- emphasis must be on minimizing delays in shock delivery
Defibrillation

Current recommendations

- safety
 - follow the AED prompts
 - do not touch the victim during shock delivery
 - no reports of harm to rescuers from attempting defibrillation in wet environments
 - no case reports of fires caused by sparking when shocks were delivered using adhesive pads in presence of oxygen
Defibrillation

Evidence review

- VF most common cause of adult arrest
 - arrhythmia with best prognosis
 - rarely reverts spontaneously
- defibrillation
 - definitive Tx for VF / VT
 - time critical intervention
- defibrillation
 - rarely effective after 10 mins
 - good CPR may ↑ chance of successful defibrillation
Take home messages

- chest compressions if unresponsive & not breathing normally
- push hard, push fast (100/min), don’t stop
- do not over-ventilate
- use AED as soon as it is available
The Australian Resuscitation Council Online

Welcome

Visitors to our website can now read and print the ARC Guidelines. In the interest of public awareness, Council has made the decision to make the guidelines freely available.

Click here to access ARC Guidelines

The new ARC Guidelines are now available!
Click here to view:

- Summary of BLS changes:
- Summary of Neonatal Life Support Changes
- Summary of ALS changes:
- Summary of Paediatric changes:

"NEW" ARC GUIDELINES - ACUTE CORONARY SYNDROMES (ACS) - Section 14
Released in February 2011
Click here to view.

Subscribers please click on Subscribers Only Link and login using your access details. This will gain you access to the ARC Guidelines and the extensive document library.

NEW!!! ARC Guidelines App for iPads & iPhones (Safari, Chrome, Android)

Please follow this link to open the App. When the App has opened, follow the steps:

www.resus.org.au
Australian Resuscitation Council
www.resus.org.au

9TH INTERNATIONAL SPARK OF LIFE CONFERENCE

“Resuscitation Systems of Care – A Team Effort”

HILTON ON THE PARK, MELBOURNE
18-20 April 2013

Conveniently located at 192 Wellington Parade, Melbourne, Melbourne, VIC, Australia in Melbourne City, Hilton On The Park Hotel Melbourne is the supreme home base from which to explore or do business in Melbourne, home to some of Australia’s finest attractions.

International Speakers
- Dr Dana Edelson – (Chicago, USA)
- Dr Mads Gilbart – (Norway)
- Professor Laurie Morrison – (Canada)
- Dr Swee Han Lim – (Singapore)

Australasian Visitor
- Dr Stephen Bernard